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Abstract

A new technique for the rotor whirl damping in rotating machinery, based on the elastic suspension of the journal boxes

and the use of dry friction surfaces normal to the shaft axis between their supports and the frame, is here analysed

theoretically for several cases of rotor systems characterized by mass and constraint asymmetry, where gyroscopic effects

are to be expected and conical whirl motions may grow up. The critical flexural speeds can be easily cut off by an adhesive

state of the supports and the whirl amplitude can be minimized as well throughout the remaining sliding range. Confining

the operative angular speed of the rotor in the range of adhesive contact between the dry friction surfaces, no significant

increase of power dissipation or heat production has to be ascribed as a whole to this type of suspension system, whose

task is just to suppress the resonant peaks when passing the critical speeds. On the other hand, the rubbing surface wear

can be easily compensated in the long run by use of suitable spring devices to close the friction contact. The uniqueness and

the stability of the steady motion are proved, both in the absence and in the presence of possible additional viscous sources

of dissipation. It is also shown how the destabilizing influence of the shaft material hysteresis can be counterbalanced by

the other external dissipative forces.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Even a small mass unbalance may generate violent and dangerous whirling motions of a rotor on
approaching critical flexural speeds, which are known to be in close correlation with the elastic and inertial
characteristics of the machine. Annular motion-limiting stops or squeeze-film dampers may restrain the
whirling motions [1–6], introducing a certain level of physical and/or geometrical nonlinearity into the whirl
model, together with the possible onset of instability conditions or non-synchronous oscillations.

Setting up compliant supports may improve the frequency response, but the number of degrees of freedom
and critical speeds increases and wider speed ranges are to be controlled to prevent undesired critical
conditions. Flexible damped supports have been widely analysed in the past (see for example [7–12]), showing
a behaviour more or less similar to the viscously damped dynamical vibration absorbers, and even gas bearing
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature (dimensionless quantities unless

specified)

A, A0 flexibility matrices for moving support
and fixed-support systems

ct, cr, ch translational (N s/m), rotational (N sm)
and hysteretic coefficients of damping
(N s/m)

cij inversion coefficients of impedance ma-
trix Z

dt, dr translational and rotational damping
factors

dh hysteretic factor
D damping matrix
e rotor eccentricity (m)
E Young’s modulus (N/m2)
Fh hysteretic force on rotor (N)
Fxz, Fyz force–moment vectors on bending

planes xz and yz

G ¼ mg/(ek) dimensionless gravity field
H hysteresis matrix
I moment of inertia of shaft cross-section

(m4)
jd, ja diametral and axial moment of inertia of

rotor (kgm2)
Jd ¼ jd/(ml2), Ja ¼ ja/(ml2) dimensionless diame-

tral and axial moment of inertia of rotor
k reference shaft stiffness (N/m)
k3, k4 suspension stiffness (N/m)
K stiffness matrix
K3 ¼ k3/k, K4 ¼ k4/k dimensionless suspension

stiffness
l shaft length (m)
L Lyapunov function
L3 ¼ �z3/l, L4 ¼ z4/l dimensionless distances of

rotor from supports
m rotor mass (kg)
m3, m4 support mass (kg)
M mass matrix
M3 ¼ m3/m, M4 ¼ m4/m dimensionless support

mass
N̂3; N̂4 friction phasors (scaled by sliding force

amplitudes)
R1, R2, R3, R4 dimensionless whirling amplitudes

of rotor path (1) and tilt (2) and of
support paths (3) and (4)

vrel. relative velocity vector (m/s)
V dimensionless velocity vector

w0 complex amplitude vector of natural
modes (m)

W(y), DW(y) complex displacement–rotation
vector, difference between two solutions

W0 complex amplitude vector of steady
whirling

x, y, z, x0, y0, z0 coordinates in non-rotating
references (m)

X, Y displacement–rotation vectors
Z complex impedance matrix
a angle between steady and perturbed

velocities
g1, g2, g3, g4 angular phases of rotor path (1) and

tilt (2) and of support paths (3) and (4)
y ¼ ot angular rotation variable
l ¼ on/o ratio of natural whirling speed to shaft

speed
x, Z, z, x0, Z0, z0 coordinates in rotating

references (m)
s ( ¼ 1 or 0) sliding or adhesion indicator
j, c small rotation angles around x and y

due to shaft bending
/, /adh. sliding and adhesion friction forces (N)
F ¼ f/(ek), Fadh. ¼ fadh./(ek) dimensionless slid-

ing and adhesion friction forces
F̂adh: dimensionless complex adhesion force
o angular speed (s�1)
oc ¼ k/m reference critical speed (s�1)
O ¼ o/oc dimensionless angular speed
On ¼ on/oc dimensionless whirling speed in nat-

ural mode

Subscripts and superscripts

(c) cofactor matrix
r, i real, imaginary
r, t rotational and translational damping
T transpose matrix
real real matrix
1 rotor centre displacement
2 rotor tilt
3 back support displacement
4 front support displacement
* inversion auxiliary matrices (Section 6)
(y)0, (y)00 first, second derivative with respect

to ygð. . .Þ perturbation variable
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suspension systems have been studied and applied in high-speed turbomachines [13–15]. Nevertheless, a
drawback of the viscous suspension is the introduction of a source of dissipation that remains active also at the
nominal operating point, even far from the critical speeds.

The present analysis originates from the idea of suspending the shaft journal boxes on suitable springs and
creating, on the supports, flat rubbing surfaces orthogonal to the shaft axis, with the function of damping the
critical whirling motion by dry friction. A previous study has ascertained the feasibility of this technique for a
symmetric rotor of the Laval–Jeffcott type with symmetric side constraints, by an in-depth dynamical analysis
throughout the whole speed range [16]. Here, a more general typology will be approached, where the
symmetry with respect to the mid-plane is removed and gyroscopic effects intervene to complicate the rotor
response. The uniqueness and stability of the steady motion will be carefully studied also for these cases,
considering the shaft internal hysteresis as well.

It is noteworthy that the wear compensation of sliding surfaces may be made automatic by using suitable
spring devices to load the friction pads (e.g. Belleville washers or other springs). Moreover, it is remarkable
that the sliding condition between the friction surfaces may be rendered infrequent enough in practice if an
adhesive contact state is suitably planned for an extended portion of the speed range and this motionless
support configuration is chosen for the usual working condition of the rotating machine, while the sliding
operation is programmed to start spontaneously to choke the whirling motion when passing occasionally
through what would be a critical speed of the fixed-support system. The advantage of dry friction dampers
consists thus in that they behave similar to clutches, which either lock or release the connection between the
journal boxes and the frame depending on the rotational speed, in such a way that, during the normal
operative conditions, there is neither power dissipation nor heat production because the friction devices are
motionless. This behaviour can be achieved by a proper choice of the friction level in dependence on the
suspension-to-shaft stiffness ratios and on the support-to-rotor mass ratios.

The dry friction application in rotating machinery was claimed by some patents in the past [17,18], but there
was not a thorough analysis of the dynamical behaviour of this support configuration.

2. Mathematical model

The compliant side supports subject to dry friction introduce a strong nonlinearity due to the continuous
self-alignment of the friction forces on the one and the other support in opposition to the variable directions of
the instantaneous sliding velocities. Yet, in the hypothesis of equal stiffness of each single suspension and of
the shaft in the one and the other transversal direction, a steady-state rotating solution may be obtained
straightforwardly in closed form.

Fig. 1 describes the dynamical system under examination and may be used as a reference for the notation.
The point of view of the present theoretical approach is similar to that of Refs. [19,20]. It is supposed that the
mass centre C is placed at a fixed distance e from the intersection O1 of the shaft axis with the rotor diametral
plane. The frame Cxyz moves with C remaining parallel to the fixed frame Ox0y0z0, while the frame CxZz is a
particular principal frame of the rotor, obtainable by another principal frame fixed to the rotor itself, by
means of a backward rotation of the diametral axes x and Z around z through the rotor rotation angle y ¼ ot.
Then, the reference CxZz does not take part in the main rotating motion with angular speed o, but only
performs small rotations j and c around axes x and y because of the shaft elastic deformation. Furthermore,
the direction of y0 and y is chosen opposite to the gravitational field g.

Some external environmental dissipation is supposed to act on the rotor translational and rotational
motions, due for example to the gas or the steam flowing through the rotating blades if a turbomachine is
being considered. These aerodynamic resistances are assumed viscous-like (linear) for simplicity and the
viscous equivalent coefficients ct (N s/m) and cr (N sm) are introduced in correspondence.

The internal dissipative force on the rotor due to the shaft hysteresis is correlated, similar to [16],
with the velocity vrel. of the rotor centre O1 relative to a reference system O3x0Z0z0 having the coordinate axis z0
through the centres of the shaft end sections and rotating rigidly with such end sections at the same angular
speed o (detail of Fig. 1). In the case of a shaft on two supports, define L3 ¼ �z3/l and L4 ¼ z4/l

the dimensionless distances of the rotor from the shaft ends, where l is the shaft length. Components
of vrel. in the fixed reference Ox0y0z0 are given by vrel.,x ¼ _x1 � _x3L4 � _x4L3+o(y1�y3L4�y4L3) and
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Fig. 1. Scheme of rotating machine with expanded view of back support and frame. Detail: reference system rotating with end sections.
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vrel.,y ¼ _y1 � _y3L4 � _y4L3�o(x1�x3L4�x4L3), while for a cantilever shaft clamped at 3 and loaded at 4, they
are vrel.,x ¼ _x1 � _x3+o(y1�y3) and vrel.,y ¼ _y1 � _y3�o(x1�x3). The hysteresis force on the rotor, opposite to
the relative velocity of O1, is obtained multiplying this velocity by a hysteretic coefficient ch: Fh ¼ �chvrel..
The corresponding forces on the two supports are calculated imposing the vanishing of the resultant moment
of the hysteretic forces on the rotor, F3h ¼ �L4Fh, F4h ¼ �L3Fh, or otherwise one has F3h ¼ �Fh in the case of
a cantilever shaft.

The torsional deformation between the rotor and the end sections is ignored, because any possible torsional
oscillation is uncoupled with the bending motion. Moreover, the shaft mass is neglected (Jeffcott rotor
assumption).

Introducing the angular time variable y ¼ ot, the differentiation with respect to y is indicated with
primes, whence d(y)/dt ¼ o(y)0, etc. Indicating with k the reference shaft stiffness, which may be taken from
the symmetric case with fixed support (e.g. k ¼ 48EI/l3 for self-aligning bearings or k ¼ 192EI/l3 for

cylindrical bearings), and with oc ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
the reference critical speed, the angular speed ratio O ¼ o/oc,

the mass ratios, M3 ¼ m3/m and M4 ¼ m4/m, the stiffness ratios, K3 ¼ k3/k and K4 ¼ k4/k, are also
introduced. Moreover, the damping factors dt ¼ 0.5ctoc/k and dr ¼ 0.5croc/(kl2) are introduced for the
translational and rotational motions and the dimensionless acceleration of gravity G ¼ mg/ek is used to
account for the weight.

As well known, in steady conditions, one of the effects of gravity is that the whole shaft does not rotate
rigidly with its bending plane and supports, with some rotor shift due to the unbalance, but point O1 travels
along a circular path, with respect to the rotating reference frame O3x0Z0z0 of Fig. 1, counter-rotating with the
angular speed �o. Therefore, assuming the hysteretic work proportional to the cycle area, i.e. assuming that

the integral ch

H
ðv2rel:;x þ v2rel:;yÞdt ¼ cho

H
½ðx01 � L4x

0
3 � L3x

0
4 þ y1 � L4y3 � L3y4Þ

2+(y1
0�L4y3

0�L3y4
0� x1+

L4x3+L3x4)
2] dy is proportional to the square of the path radius independent of o, it is easy to conclude that

the product chomay be considered constant on varying o, whence a constant hysteresis factor dh ¼ 0.5cho/k is
here introduced (see [21]).
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In sliding conditions, it is assumed that the total friction force vectors /3 and /4 have constant amplitudes
and are opposite to the support translational velocities. Therefore, components of these forces are

�fjx
0
j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02j þ y02j

q
and �fjy

0
j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02j þ y02j

q
(for j ¼ 3, 4). In the case of stuck condition of any of the two

supports, the sliding force /j has to be replaced by an adhesive force /adh.j, which is not known a priori, but
must balance the other forces on the support. The magnitude of all these friction forces may be made
dimensionless by introducing the friction variables Fj ¼ fj/(ke) and Fadh.,j ¼ fadh.j/(ke).

In view of a complete dimensionless formulation, all displacements are scaled by the rotor eccentricity e and
all rotations by e/l, so that, using capital letters for the dimensionless quantities and assigning the subscripts
1 and 2 to the rotor displacement and tilt, the following dimensionless displacement–rotation vectors are
introduced

X ¼ fX 1;X 2;X 3;X 4g
T; Y ¼ fY 1;Y 2;Y 3;Y 4g

T (1)

where Xj ¼ xj/e, Yj ¼ yj/e, for ja2, Xj ¼ cl/e, Yj ¼ �jl/e, for j ¼ 2, and the subscript j refers to
the rotor displacement (j ¼ 1), or to the rotations around y and x (j ¼ 2), or to the support
displacements (j ¼ 3, 4). Notice that the sign of rotation j around x-axis was changed, when introducing
the dimensionless rotation Y2, in order to use the same flexibility (or stiffness) matrix for both the bending
planes, xz and yz.

Taking into account the gyroscopic effects in the evaluation of the total moment of the inertia forces with
respect to the mass centre, the dimensionless force–moment expressions in the bending planes xz and yz may
be written in the vector form:

Fxz ¼ � O2

X 001 � cos y

JdX 002 þ JaY 02

M3X
00
3

M4X
00
4

8>>>>><>>>>>:

9>>>>>=>>>>>;
� 2O

dtX
0
1

drX
0
2

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;
� 2dh

X 01 þ Y 1 � L4ðX
0
3 þ Y 3Þ � L3ðX

0
4 þ Y 4Þ

0

�L4ðX
0
1 þ Y 1Þ þ L2

4ðX
0
3 þ Y 3Þ þ L3L4ðX

0
4 þ Y 4Þ

�L3ðX
0
1 þ Y 1Þ þ L3L4ðX

0
3 þ Y 3Þ þ L2

3ðX
0
4 þ Y 4Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;

�

0

0

s3F3X 03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
3 þ Y 0

2
3

q þ ð1� s3ÞFadh:3;x

s4F4X 04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
4 þ Y 0

2
4

q þ ð1� s4ÞFadh:4;x

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(2a)

Fyz ¼ � O2

Y 001 � sin y

JdY 002 � JaX 02

M3Y 003

M4Y 004

8>>>>><>>>>>:

9>>>>>=>>>>>;
� 2O

dtY
0
1

drY
0
2

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;
� 2dh

Y 01 � X 1 � L4ðY
0
3 � X 3Þ � L3ðY

0
4 � X 4Þ

0

�L4ðY
0
1 � X 1Þ þ L2

4ðY
0
3 � X 3Þ þ L3L4ðY

0
4 � X 4Þ

�L3ðY
0
1 � X 1Þ þ L3L4ðY

0
3 � X 3Þ þ L2

3ðY
0
4 � X 4Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;

�

0

0

s3F3Y
0
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
3 þ Y 0

2
3

q þ ð1� s3ÞFadh:3;y

s4F4Y
0
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
4 þ Y 0

2
4

q þ ð1� s4ÞFadh:4;y

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
� G

1

0

M3

M4

8>>>>><>>>>>:

9>>>>>=>>>>>;
(2b)
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where for j ¼ 1, 3, 4, Fxz, j and Fyz, j refer to x-components and y-components of the forces applied to the rotor
(j ¼ 1) and to the supports (j ¼ 3, 4), while for j ¼ 2, Fxz, j and �Fyz, j give y- and x-component of the moment
acting on the rotor. All forces are scaled by ke, all moments by kel and each of the coefficients s3 and s4 has to
be set equal either to 1 or to 0, depending on the slip or stick condition of the supports 3 and 4, respectively.
Moreover, Jd ¼ jd/ml2 and Ja ¼ ja/ml2 are the dimensionless diametral and axial moment of inertia of the
rotor, scaled by the product ml2, where jd and ja are the real moment of inertia. The force vectors were split, in
Eq. (2), in their distinct components, inertial, viscous, hysteretic, coulombian and gravitational.

According to the form chosen for the displacement–rotation and force–moment vectors, introduce the
following dimensionless flexibility matrix:

A ¼

A0;11 þ
L2
4

K3
þ

L2
3

K4
A0;12 �

L4

K3
þ

L3

K4

L4

K3

L3

K4

A0;21 �
L4

K3
þ

L3

K4
A0;22 þ

1

K3
þ

1

K4
�

1

K3

1

K4

L4

K3
�

1

K3

1

K3
0

L3

K4

1

K4
0

1

K4

26666666666664

37777777777775
(3)

where the shaft flexibility sub-matrix 2� 2 [A0] is evaluated under the hypothesis of fixed supports. For
example, for self-aligning bearings (hinged–hinged beam) and for cylindrical bearings (clamped–clamped
beam), one has, respectively,

self-aligning : A0 ¼ 16
L2
3L

2
4 L3L4ðL4 � L3Þ

L3L4ðL4 � L3Þ 1� 3L3L4

" #

¼ k
1 0

0 l

" #
l3L2

3L
2
4

�
ð3EIÞ l2L3L4ðL4 � L3Þ

�
ð3EIÞ

l2L3L4ðL4 � L3Þ
�
ð3EIÞ lð1� 3L3L4Þ=ð3EIÞ

24 35 1 0

0 l

" #
(4a)

cylindrical : A0 ¼ 192
L3
3L

3
4

�
3 L2

3L
2
4ðL4 � L3Þ

�
2

L2
3L

2
4ðL4 � L3Þ

�
2 L3L4ðL3 þ L4 � 3L3L4Þ

24 35
¼ k

1 0

0 l

" #
l3L3

3L
3
4

�
ð3EIÞ l2L2

3L
2
4ðL4 � L3Þ

�
ð2EIÞ

l2L2
3L

2
4ðL4 � L3Þ

�
ð2EIÞ lL3L4ðL3 þ L4 � 3L3L4Þ=ðEIÞ

24 35 1 0

0 l

" #
(4b)

At last, a symmetric hysteretic matrix H can be defined:

H ¼ dh

1 0 �L4 �L3

0 0 0 0

�L4 0 L2
4 L3L4

�L3 0 L3L4 L2
3

266664
377775 (5)

and accounting for Eqs. (1)–(5), the equations of motion, X�AFxz ¼ 0, Y�AFyz ¼ 0, turn out to be

KXþ 2ODX0 þ 2HðX0 þ YÞ þ O2MX00 þ

�O2 cos y

O2JaY 02

s3F3X
0
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
3 þ Y 0

2
3

q
þ ð1� s3ÞFadh:3;x

s4F4X
0
4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
4 þ Y 0

2
4

q
þ ð1� s4ÞFadh:4;x

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 0 (6a)
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KYþ 2ODY0 þ 2HðY0 � XÞ þ O2MY00 þ

�O2 sin yþ G

�O2JaX 02

s3F3Y 03

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
3 þ Y 0

2
3

q
þ ð1� s3ÞFadh:3;y þ GM3

s4F4Y 04

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 0

2
4 þ Y 0

2
4

q
þ ð1� s4ÞFadh:4;y þ GM4

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 0 (6b)

where K ¼ A�1 is the stiffness matrix and D andM are the viscous and mass matrices, which are diagonal with
coefficients (dt, dr, 0, 0) and (1, Jd, M3, M4), respectively.

The constant part of the solution, i.e. the central equilibrium configuration of the rotor, can
be easily obtained by Eq. (6), though this solution must not be considered unique, as will be better specified
in the following, because the adhesive condition between the friction surfaces can be satisfied in an infinite
number of positions, provided that the static friction limit is not attained. One has, for zero adhesive
force,

Xequil: ¼ �2AHYequil:; Yequil: ¼ 2AHXequil: � GAf1; 0;M3;M4g
T (7)

and as Xequil.a0, the well-known static bias due to hysteresis is observable.
In the case of a cantilever shaft, for example clamped at the support 3 and carrying the rotor at the free end 4,

all the above vectors and matrices become three dimensional and, assuming k ¼ 3EI/l3 as the reference shaft
stiffness, matrices A and H are given by

A ¼

1þ 1
K3

3
2

1
K3

3
2

3 0
1

K3
0 1

K3

2664
3775; H ¼ dh

1 0 �1

0 0 0

�1 0 1

264
375 (8a,b)

where the dimensionless flexibility sub-matrix A0 ¼
1 3=2

3=2 3

" #
has been used. The central equilibrium

configuration is still given by Eq. (7), using the mass vector {1, 0, M3}
T.

In case of adherence of any support (i.e. if sj ¼ 0, for j ¼ 3 or/and 4), an infinite number of other
equilibrium solutions may be found. They can be obtained by Eq. (7) adding AijFadh.j, x, eq. to Xi,equil.,
and adding AijFadh.j, y, eq. to Yi,equil., where the values of Fadh.j,x, eq. and Fadh.j, y, eq. are arbitrary at all,
provided that the static friction limit is not exceeded. Thus, such positions may be imagined as reachable
by a rigid displacement from the reference configuration, Fadh.j, x, eq. ¼ Fadh.j, y, eq. ¼ 0 of Eq. (7) and absorb
the constant amounts Fadh.j,x, eq. and Fadh.j, y, eq. of the total adhesive forces. Anyway, on varying the
angular speed smoothly and continuously and passing from the quasi-steady sliding to the sticking state,
the journal box position tends to the central configuration of Eq. (7), as will be seen in the following,
and moreover, even a hypothetical different position would not affect the rotor motion around it
at all. Therefore, it will be assumed that Fadh.j, x, eq. ¼ Fadh.j, y, eq. ¼ 0 and, from now onward, the vectors X

and Y will be assumed curtailed of their constant content, as if the gravity effects were absent (e.g. vertical
shaft).

The dynamic remainder of the differential system (6a,b) can be further compacted multiplying Eq. (6b) by
the unit imaginary number i, summing it to Eq. (6a) and putting W ¼ X+iY, F̂adh:j ¼ Fadh.j, x+iFadh.j, y:

KWþ 2ODW0 þ 2HðW0 � iWÞ þ O2MW00 þ

�O2 expðiyÞ

�iO2JaW 0
2

s3F3 expði argW 0
3Þ þ ð1� s3ÞF̂adh:3

s4F4 expði argW 0
4Þ þ ð1� s4ÞF̂adh:4

8>>>><>>>>:

9>>>>=>>>>; ¼ 0 (9)



ARTICLE IN PRESS
F. Sorge / Journal of Sound and Vibration 321 (2009) 79–10386
3. Uniqueness of the circular solution

In a following section, a steady-state circularly polarized solution of Eq. (9) will be discussed. Here,
uniqueness of this solution will be proved ad absurdum for the case of absence of hysteresis and no adhesion
(s3 ¼ s4 ¼ 1). Indicating it with W(y)c, indicating with W(y)s any other hypothetical steady solution, provided
it exists, with period 2p, or else multiple or sub-multiple of 2p, and defining DW(y) ¼W(y)c�W(y)s their
difference, the co-existence of such solutions would permit rewriting Eq. (9) as follows:

KDWþ 2ODDW0 þ O2MDW00

þ f0; iO2JaðW
0
2s �W 0

2cÞ;F3½expði argW 0
3cÞ � expði argW 0

3sÞ�;F4½expði argW 0
4cÞ � expði argW 0

4sÞ�g
T ¼ 0 (10)

Then, indicating with an overbar and with the notation Re(y) the complex conjugate and the real part of
any complex number, pre-multiplying Eq. (10) by DW̄

0T
and adding it to the complex conjugate of the same

equation, pre-multiplied by DW0T, one obtains

2Re
X

i;j

Kij DW̄
0

i DW j þ O2
X

j

Mjj DW̄
0

j DW 00
j

 !
þ 4O

X
j

Djj DW 0
j

��� ���2
þ F3 W 0

3c

�� �� expð�i argW 0
3cÞ � W 0

3s

�� �� expð�i argW 0
3sÞ

� �
expði argW 0

3cÞ � expði argW 0
3sÞ

� �
þ F3 W 0

3c

�� �� expði argW 0
3cÞ � W 0

3s

�� �� expði argW 0
3sÞ

� �
expð�i argW 0

3cÞ � expð�i argW 0
3sÞ

� �
þ F4 W 0

4c

�� �� expð�i argW 0
4cÞ � W 0

4s

�� �� expð�i argW 0
4sÞ

� �
expði argW 0

4cÞ � expði argW 0
4sÞ

� �
þ F4 W 0

4c

�� �� expði argW 0
4cÞ � W 0

4s

�� �� expði argW 0
4sÞ

� �
expð�i argW 0

4cÞ � expð�i argW 0
4sÞ

� �
¼ 0 (11)

Integrating with respect to y over any common multiple of the two periods, of W(y)c and W(y)s, the elastic
and the inertia terms would vanish due to the solution periodicity and Eq. (11) would yield

4O
X

j

Dj

Z 2np

0

DW 0
j

��� ���2 dy
þ 2F3

Z 2np

0

W 0
3c

�� ��þ W 0
3s

�� ��� 	
1� cosðargW 0

3c � argW 0
3sÞ

� �
dy

þ 2F4

Z 2np

0

W 0
4c

�� ��þ W 0
4s

�� ��� 	
1� cosðargW 0

4c � argW 0
4sÞ

� �
dy ¼ 0 (12)

In the case of two distinct solutions, W(y)caW(y)s, the integral of the viscous term would certainly be
positive, while the integral of the dry friction terms would be essentially non-negative and would vanish only
for constantly equal arguments of the complex sliding velocities of the two solutions, argW03c�argW03s,
argW04c�argW04s, i.e. for constantly aligned sliding velocities. Nevertheless, should this condition be satisfied,
even with no viscous dissipation (D�0), Eq. (10) would produce, for the new vector variable DW(y), the ideal
natural solutions of the linear non-dissipative autonomous system, with their own circular frequencies, in
contradiction with the hypothesis of velocity parallelism.

Therefore, the steady circular solution is certainly unique in the case of full sliding of both journal boxes and
of ideally elastic shaft, while the above proof may no longer hold for sticking journal boxes, where several
adhesive solutions may co-exist, as said before, or in presence of hysteresis of the shaft material, in which case,
the above procedure implies a hysteretic integral whose positiveness cannot be ascertained. Nevertheless, if the
hysteresis effect is slight, the positive integrals of Eq. (12) prevail and the solution is unique as well.

4. Stability

A logic similar to the previous section permits proving the stability of the circular solution for sliding
supports, in absence of hysteresis.

Assume that a perturbation characterized by vectors ~X and ~Y of arbitrary amplitude not necessarily small, is
superimposed on the steady solution. Applying Eqs. (6) to the perturbed motion, subtracting then their
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expressions for the steady motion and recalling that the only nonlinear terms are the dry friction ones, one can
write

K ~Xþ 2OD ~X
0
þ O2M ~X

00
þ

0

O2Ja
~Y 02

F3
X 03 þ

~X 03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 03 þ

~X 03Þ
2
þ ðY 03 þ

~Y 03Þ
2

q �
X 03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
3 þ Y 0

2
3

q
264

375
F4

X 04 þ
~X 04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX 04 þ
~X 04Þ

2
þ ðY 04 þ

~Y 04Þ
2

q �
X 04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
4 þ Y 0

2
4

q
264

375

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

¼ 0 (13a)

K ~Yþ 2OD ~Y
0
þ O2M ~Y

00
þ

0

�O2Ja
~X 02

F3
Y 03 þ

~Y
0

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 03 þ

~X 03Þ
2
þ ðY 03 þ

~Y 03Þ
2

q �
Y 03ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
3 þ Y 0

2
3

q
264

375
F4

Y 04 þ
~Y 04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX 04 þ
~X 04Þ

2
þ ðY 04 þ

~Y 04Þ
2

q �
Y 04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
4 þ Y 0

2
4

q
264

375

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

¼ 0 (13b)

Pre-multiplying Eqs. (13a) and (13b) by ~X
0T

and ~Y
0T
, respectively, and summing them, one getsX

i;j

Kijð ~X i
~X 0j þ ~Y i

~Y 0jÞ þ 2O
X

j

Djjð
~X 0

2

j þ
~Y 0
2

j Þ þ O2
X

j

Mjjð ~X
0

j
~X
00

j þ
~Y
0

j
~Y
00

j Þ

þ F3

~X 03ðX
0
3 þ

~X 03Þ þ ~Y
0

3ðY
0
3 þ

~Y 03Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 03 þ

~X 03Þ
2
þ ðY 03 þ

~Y 03Þ
2

q �
~X 03X

0
3 þ

~Y
0

3Y
0
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
3 þ Y 0

2
3

q
264

375
þ F4

~X 04ðX
0
4 þ

~X 04Þ þ ~Y
0

4ðY
0
4 þ

~Y 04Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 04 þ

~X 04Þ
2
þ ðY 04 þ

~Y 04Þ
2

q �
~X 04X

0
4 þ

~Y
0

4Y
0
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 0
2
4 þ Y 0

2
4

q
264

375 ¼ 0 (14)

Indicating with Vj and ~Vj (j ¼ 3 or 4) the dimensionless velocity vectors of the supports, for the steady
solution and for the perturbation, the factors of Fj inside square brackets can be written in the form
(Vj+ ~Vj) � ~Vj/9Vj+ ~Vj9�Vj � ~Vj/9Vj9 and they represent the difference of the components of ~Vj along directions
Vj+ ~Vj and Vj. Indicating then the angle between Vj+ ~Vj and Vj with aj (see Fig. 2), these components can be
written as 9Vj+ ~Vj9�9Vj9cos aj and 9Vj+ ~Vj9cos aj�9Vj9, so that their difference is (9Vj+ ~Vj9+9Vj9) (1�cos aj)
and is always positive, unless aj ¼ 0, i.e. unless the two velocities Vj+ ~Vj and Vj are aligned and concordant.
Nevertheless, in this case, the perturbation motion ( ~X, ~Y) would coincide with a natural motion by Eq. (13)
and the support velocities could not be constantly aligned with the steady motion. Consequently, the dry
friction terms of Eq. (14) are always positive, save at the alignment time instants.

Therefore the sum of the integrals of the elastic term and of the mass term of Eq. (14) is a convenient choice
for a positive-definite Lyapunov function L (perturbation energy function):

Lð ~X ; ~X
0
; ~Y ; ~Y 0Þ ¼

1

2

X
i;j

Kijð ~X i
~X j þ ~Y i

~Y jÞ þ
O2

2

X
j

Mjj
~X 0

2

j þ
~Y 0
2

j


 �
(15)
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Fig. 2. Journal box velocities, Vj and ~Vj , in the steady and the perturbed motions.
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whose total derivative with respect to y is negative along any solution trajectory by Eq. (14), even for
vanishing viscous dissipation, giving thus the proof of the asymptotic stability of the steady motion.

This above stability proof holds also if one of the supports is motionless with an adhesive contact of the
friction surfaces, while for both motionless supports, the stability of the system has to be considered either as
orbital (in the sense of Lyapunov) in the absence of viscous resistance, or as asymptotic in its presence.

The stability proof no longer holds in the case of a hysteretic shaft material, where, as is well known,
instability conditions may grow up above the first critical speed when the other external damping sources are
not sufficient to counteract the hysteresis destabilizing effect. The condition of stability may be inspected, for
example, by the small perturbation approach [16], which, owing to the nonlinearity inherent in the dry friction
terms, involves linear differential equations with periodic coefficients, and hence the Floquet theory [22] may
be applied as in [16]. Otherwise, for a more general control of the stability in the large, a numerical technique
of the Runge–Kutta type may be applied, starting from random initial values of the variables and integrating
the differential system as long as a sufficiently large number of rotor revolutions have been performed. Figs. 3
and 4 show the path of the rotor–shaft connection point O1 for a supercritical example case in the presence of
hysteresis, the first without and the second with external viscous damping, whose stabilizing influence is clearly
visible in Fig. 4, where the trajectory approaches a stable circular attractor asymptotically. With the
hypothesis of nearly ideal elasticity of the shaft material (dh small), even the small environmental external
damping always present in all rotor-support systems may be sufficient to quench the unstable trend due to
hysteresis. For this purpose, also viscous dampers acting between the supports and the fixed frame could work
very efficiently. In this case, the third and the fourth diagonal terms of matrix D, which are zero in the present
model, would not be so.
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5. Natural modes

The natural whirling speeds on of the ideal system without unbalance and without viscous, hysteretic and
Coulombian dissipation can be obtained by Eq. (9), putting D ¼ H ¼ 0, F3 ¼ F4 ¼ 0, multiplying by e, letting
e- 0 and replacing the products eWj, which remain finite, with eWj ¼ wj0 exp(ily), where l ¼ on/o:

½K� O2
nMgðlÞ�w0 ¼ 0 (16)

Here, On ¼ lO ¼ on/oc indicates the dimensionless whirling speed and Mg(l) the ‘‘gyroscopic’’ diagonal mass
matrix, whose elements are (1, Jd�Ja/l, M3, M4). The eigenvalue problem defined by Eq. (16) can be easily
worked out by solving the characteristic equation

K11 � O2
n K12 K13 K14

K21 K22 � O2
n Jd � Ja=l
� 	

K23 K24

K31 K32 K33 � O2
nM3 K34

K41 K42 K43 K44 � O2
nM4

����������

����������
¼ 0 (17)

for 1/l in dependence on O2
n, i.e.

1

l
¼

Jd

Ja

�
1

O2
nJa

K22 þ
K12K

ðcÞ
12 þ K32K

ðcÞ
32 þ K42K

ðcÞ
42

K
ðcÞ
22

 !
(18)

where the K
ðcÞ
ij ’s are the cofactors of the coefficients yij in the determinant of Eq. (17), functions of O2

n. This
procedure permits tracing the plots of On, dimensionless precession speed, versus O, dimensionless angular
speed of the shaft.

Figs. 5 and 6 show examples of these diagrams, the one for a hinged–hinged shaft case and the other for a
clamped–free case, both for an oblate ellipsoid of inertia of the rotor (JdoJa) and for an elongated ellipsoid
(Jd4Ja). Notice that the case of the cantilever shaft can be studied by the above equations dropping the terms
with subscript 4 and expressing the stiffness coefficients suitably.

Similar to the fixed-support case, Eq. (18) indicates that there is a horizontal asymptote On ¼ 0, an inclined
asymptote with slope l ¼ On/O ¼ Ja/Jd and three other couples of asymptotes parallel and symmetric with
respect to the O-axis (only two couples for the clamped–free system), given by the roots of the equation
K(c)
22 ¼ 0, which is a cubic (quadratic) equation in O2

n. The critical flexural speeds of the ideal system are given
by the intersection of the straight line On ¼ O with these plots. They are four (three) in number if Ja/Jdo1, due
to the lower slope of the inclined asymptote in comparison with the bisector of the coordinate axes, otherwise
they are three (two).
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The diagrams show four (three) forward (On40) and four (three) backward precession motions (Ono0).
They may grow up in transient condition, but die out in practice at the steady state.

6. Circular solution

The steady-state circular solution can be obtained in a straightforward manner. Putting W ¼W0 exp(iy),
where W0 is the complex amplitude vector, and considering that the successive derivatives of W are given
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by W(n)
¼W exp(inp/2), Eq. (9) yields

½Iþ 2iOAD� O2AMgð1Þ�W0 ¼ ZW0

¼ A O2; 0;�is3F3 expði argW 0;3Þ � ð1� s3ÞF̂adh:3;�is4F4 expði argW 0;4Þ � ð1� s4ÞF̂adh:4

� T
(19)

where I is the identity matrix, A the flexibility matrix of Eq. (3) or (8a), Mg(1) is the gyroscopic mass matrix
Mg(l) of the previous section, calculated for l ¼ 1 and the notation Z has been introduced for brevity for the
dynamical impedance matrix, which multiplies the unknown vector W0. Moreover, the terms �isjFj and
�F̂adh:jð1� sjÞ give the complex amplitudes of the dimensionless sliding forces and adhesion forces,
respectively.

It is remarkable, though it was expected, that the hysteresis term has disappeared from Eq. (19), because the
steady circular solution does not imply any shape change of the shaft deflection line in the rotating reference
O3x0Z0z0 of Fig. 1. Thus, the hysteresis effect is just on the static part of the rotating shaft configuration and its
destabilizing effect can be counteracted by the other dissipation sources.

Denoting by with Z0 the non-viscous impedance matrix (Z0 ¼ I�O2AMg(1)), one can put, in order to
facilitate the numerical inversion of the whole complex matrix Z,

Z ¼ Z0 þ 2iO

dtA11 drA12 0 0

dtA21 drA22 0 0

dtA31 drA32 0 0

dtA41 drA42 0 0

2666664

3777775
¼ Z0 þDt �Dt0 þDr �Dr0 þDtr �Dt0r �Dtr0 þDt0r0 (20)

where
�
 Dt is obtained by Z0 replacing the first column by {2iOdtAj1},

�
 Dt0 is obtained by Dt replacing the first column by zeroes,

�
 Dr is obtained by Z0 replacing the second column by {2iOdrAj2},

�
 Dr0 is obtained by Dr replacing the second column by zeroes,

�
 Dtr is obtained by Z0 replacing the first column by {2iOdtAj1} and the second column by {2iOdrAj2},

�
 Dt0r is obtained by Dtr replacing the first column by zeroes,

�
 Dtr0 is obtained by Dtr replacing the second column by zeroes,

�
 Dt0r0 is obtained by Dtr replacing the first and second columns by zeroes.
It is easy to verify that Eq. (20) is identically satisfied and, moreover, the transpose cofactor matrix of the
dynamical matrix Z is equal to the sum of the transpose cofactor matrices of the last member of Eq. (20).

Indicating generically with D(c)T
¼ D�1 detD the transpose cofactor matrix of any generic matrix D, it is

easy to recognize that D
ðcÞT
t and D

ðcÞT
t0 have the same elements on the first row, while on the other three rows, all

the elements of D
ðcÞT
t0 are null and all the elements of D

ðcÞT
t have the common factor 2iOdt. Therefore, indicating

by Dreal, t the matrix obtainable by Dt dropping the imaginary factor 2iOdt from the first column and indicating

by I1 the identity matrix with a zero in the first diagonal place, the matrix difference D
ðcÞT
t �D

ðcÞT
t0 can be

written as 2iOdtI1D
ðcÞT
real;t ¼ 2iOdtD

�
t , where the first row is empty and for brevity D�t ¼ I1D

ðcÞT
real;t. Likewise, the

difference DðcÞTr �D
ðcÞT
r0 is given by 2iOdrDr*, where the second row is empty and D�r ¼ I2D

ðcÞT
real;r, I2 being the

identity matrix with a zero in the second diagonal place. A quite similar reasoning leads to the result that

D
ðcÞT
tr �D

ðcÞT
t0r �D

ðcÞT
tr0 ¼ �4O

2dtdrD
�
tr, where the first and the second rows are empty, and D�tr ¼ I12D

ðcÞT
real;tr, I12

being the identity matrix with zeroes in the first and second diagonal places. As regards the last matrix Dt0r0 of

Eq. (20), it is clear that D
ðcÞT
t0r0 � 0.

Since the determinant of the total dynamical matrix is equal to the sum of the determinants of the matrices
at last hand of Eq. (20), where all matrices with zero subscripts have obviously null determinants, the inverse
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of Z can be written in the following form, suitable for the numerical calculation, where the real and imaginary
parts are well separated, both at the numerator and the denominator

Z�1 ¼
Z
ðcÞT
0 � 4O2dtdrD

�
tr þ 2iOðdtD

�
t þ drD

�
r Þ

det Z0 � 4O2dtdr det Dreal;tr þ 2iOðdt det Dreal;t þ dr det Dreal;rÞ
(21)

The steady circular solution of Eq. (19) can be obtained multiplying by Z�1 and putting W0, j ¼ Rj exp(�igj),
where, for j ¼ 1, 3, 4, the Rj’s are the orbital radii of the rotor and support paths, whilst R2 is the rotor orbital
slope. Splitting Eq. (19) into their real and imaginary parts, it is possible to write down eight scalar equations
in the eight unknowns Rj and gj. In this regard, it is to be noticed that, in case of adhesion of any support
(sj ¼ 0), the correspondent sliding term �iFj exp(�igj) has to be replaced by the adhesive term �F̂adh:j, whose
modulus and argument are unknown, so that two new unknowns show up in place of gj, but, since the
correspondent radius Rj vanishes, the mathematical model remains consistent. Therefore, replacing the
exponential quantity exp(�igj) with a more general complex quantity N̂j , the modulus and the argument of N̂j

are 1 and �gj for Rj40, while they are both unknown for Rj ¼ 0, in which case the modulus |N̂j| is equal in
practice to the amplitude ratio of the adhesive force to the sliding force, as arguable by replacing F̂adh:j with
iFjF̂adh:j/(iFj) into Eq. (19).

Using Eqs. (20) and (21), the inversion of the complex algebraic system (19) may be shown to lead to

R1 expð�ig1Þ ¼ c10 � ic13N̂3 � ic14N̂4

R2 expð�ig2Þ ¼ c20 � ic23N̂3 � ic24N̂4

R3 expð�ig3Þ ¼ c30 � ic33N̂3 � ic34N̂4

R4 expð�ig4Þ ¼ c40 � ic43N̂3 � ic44N̂4 (22a,b,c,d)

where the coefficients cij ¼ cij;r þ icij;i are complex in general, but become real in the absence
of viscous dissipation (cij;i ¼ 0), and moreover they can be readily calculated by means of any matrix
algebra software. The influence of dry friction on the system behaviour is condensed in the coefficients N̂j of
Eq. (22).

In the hypothesis of sliding contact of both supports, where exp(�ig3)�N̂3 and exp(�ig4)�N̂4, one has to
solve Eqs. (22c, d) for the unknowns N̂3 and N̂4 (depending on R3 and R4):

N̂3 ¼
c30;rR4 þ n30;r þ iðc30;iR4 þ n30;iÞ

R3R4 � ðc44;iR3 þ c33;iR4Þ þ d0;r þ iðc44;rR3 þ c33;rR4 þ d0;iÞ

N̂4 ¼
c40;rR3 þ n40;r þ iðc40;iR3 þ n40;iÞ

R3R4 � ðc44;iR3 þ c33;iR4Þ þ d0;r þ iðc44;rR3 þ c33;rR4 þ d0;iÞ
(23a,b)

where

n30;r ¼ c40;rc34;i þ c40;ic34;r � c30;rc44;i � c30;ic44;r; n30;i ¼ c30;rc44;r � c30;ic44;i þ c40;ic34;i � c40;rc34;r

n40;r ¼ c30;rc43;i þ c30;ic43;r � c40;rc33;i � c40;ic33;r; n40;i ¼ c40;rc33;r � c40;ic33;i þ c30;ic43;i � c30;rc43;r

d0;r ¼ c34;rc43;r � c34;ic43;i � c33;rc44;r þ c33;ic44;i; d0;i ¼ c34;rc43;i þ c34;ic43;r � c33;rc44;i � c33;ic44;r

Then the conditions |N̂3| ¼ |N̂4| ¼ 1 give place to the double equation

R2
4ðc

2
30;r þ c230;iÞ þ 2R4ðc30;rn30;r þ c30;in30;iÞ þ ðn

2
30;r þ n2

30;iÞ

¼ R2
3ðc

2
40;r þ c240;iÞ þ 2R3ðc40;rn40;r þ c40;in40;iÞ þ ðn

2
40;r þ n2

40;iÞ

¼ ½R3R4 � ðc44;iR3 þ c33;iR4Þ þ d0;r�
2 þ ðc44;rR3 þ c33;rR4 þ d0;iÞ

2 (24a,b)

If one or both the supports are stuck, solutions (23a,b) are still valid, but the unitary conditions of the
moduli no longer hold true.

For R3 ¼ 0, R4a0 (adhesion of support 3), only |N̂4| is unitary and one gets

ðd0;r � c33;iR4Þ
2
þ ðd0;i þ c33;rR4Þ

2
¼ n2

40;r þ n2
40;i; N̂3 ¼

c30;rR4 þ n30;r þ iðc30;iR4 þ n30;iÞ

�c33;iR4 þ d0;r þ iðc33;rR4 þ d0;iÞ
(25a,b)
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For R3a0, R4 ¼ 0 (adhesion of support 4), only |N̂3| is unitary and one gets

ðd0;r � c44;iR3Þ
2
þ ðd0;i þ c44;rR3Þ

2
¼ n2

30;r þ n2
30;i; N̂4 ¼

c40;rR3 þ n40;r þ iðc40;iR3 þ n40;iÞ

�c44;iR3 þ d0;r þ iðc44;rR3 þ d0;iÞ
(26a,b)

For R3 ¼ 0, R4 ¼ 0 (adhesion of both supports), neither |N̂3| nor |N̂4| is equal to one and one gets

N̂3 ¼
n30;r þ in30;i

d0;r þ id0;i
N̂4 ¼

n40;r þ in40;i

d0;r þ id0;i
(27a,b)

To sum up, in order to explore the rotor response to the unbalance throughout the whole angular speed
range for fixed geometrical and mechanical parameters of the rotating machine, one must calculate the
complex impedance matrix Z by Eq. (20) for each speed O and then invert it by Eq. (21), to get the coefficients
cij of Eq. (22).

Then, assuming firstly sliding conditions for both the journal boxes, Eq. (24) are to be applied for the
calculation of R3 and R4. Each of the three members appearing in Eq. (24) can be considered as a function
f(R3, R4) of R3 and R4, representing a surface in the space (R3, R4, f), and in particular, the first two functions
represent two parabolic cylinders with generatrices parallel to the R3-axis and to the R4-axis respectively, while
the third one represents a fourth-order surface spreading above the plane (R3, R4) without touching it.
Looking for a possible common intersection point of these three surfaces, which might not necessarily exist
however, and proceeding by elimination of either R3 or R4, one would be lead to solve an eight degree
algebraic equation and therefore, some technique of the trial and error type must be necessarily used.

If Eq. (24) do not give real positive roots for R3 and R4, one or both the journal boxes are in an adhesive
state and the possible roots of the two quadratic Eqs. (25a) and (26a) are firstly to be searched. In the case of
only one positive root, either R440 or R340, one has to ascribe the stick state to the other support and the
modulus of the corresponding complex number N̂j, calculated either by Eq. (25b) or by Eq. (26b), gives the
amplitude ratio of the static friction force to the sliding force. If no positive root is found, there are stick
conditions on both supports and the moduli of the numbers N̂j of Eq. (27) give their static-to-sliding friction
force amplitude ratios. In the case of two positive roots on the contrary, R440 of Eq. (25a) and R340 of
Eq. (26a), two possible whirling motion may develop, one with stuck state of the support 3 and the other with
stuck state of 4. Nevertheless, it is possible to verify by the obtainable results that one of such two motions
implies static friction forces that are greater than the sliding force, while the other implies lower static forces,
which in particular become equal to the sliding force, on varying the speed O, at the transition from the stick
to the slip state. Of course, the first possibility should be checked by comparison with the static friction limit
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and, in any case, could not be attained when arriving from a sliding state at the stick state by means of a
gradual speed variation. Therefore, only the second type of whirling motion is here accepted as feasible.

Clearly, in the case of a cantilever shaft, the field of possible situations is more limited, as the sizes of the
matrices descend to 3� 3 and there is only one friction contact that may become stuck.

Figs. 7–9 show the diagrams of the orbital radius and slope of the rotor and of the path radius of the
support, as functions of angular speed, for an example case of a rotor which is not subject to viscous
dissipation and is mounted at the end of a cantilever shaft, for different levels of the friction force on the dry
friction surface (the friction force increases in the direction of arrows). The figures include also the limit cases
of zero and infinite friction force and reported are also the critical speeds for these limit cases (two-mass
frictionless system: F3 ¼ 0; fixed-support system: F3-N).
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Starting from zero friction force and increasing its level gradually, adhesive ranges show up in the high- and
low-speed fields, where the rotor response coincides with the fixed-support case (F3-N), and the extents of
these adhesive regions spread towards the speed mid-range on increasing the friction force F3. Moreover, the
rotor motion amplitude in the sliding range grows gradually with the friction level in the neighbourhood of
the critical speed of the fixed-support system, until it becomes infinitely large. At the same time, the range of
the support motion shrinks on increasing the friction level until it becomes a vertical segment of unit height
placed at the fixed-support critical speed (Fig. 9). Between these two extremes conditions, zero friction with
sliding support and infinite friction with stuck support, an optimum condition has to be searched, choosing a
compromise solution where the critical speeds of the frictionless free-support system are cut off by the
adhesive state while the motion amplitude remains reasonably moderate near the critical speed of the fixed-
support system, by letting the support slide.

In the hypothesis of no viscous dissipation, the solution can be obtained straightforwardly in closed form.
Accounting for Eq. (8a), reducing to 3� 3 the sizes of the algebraic system (19) and assuming that the support
is sliding, it is possible to write the motion equations in the following form:

1� O2 1þ
1

K3

� �� �
½1þ R1 expð�ig1Þ� �

3

2
O2ðJd � JaÞR2 expð�ig2Þ � O2 M3

K3
R3 expð�ig3Þ

¼ 1�
F3 expð�ig3Þ

K3

�
3

2
O2½1þ R1 expð�ig1Þ� þ ½1� 3O2ðJd � JaÞ�R2 expð�ig2Þ ¼ 0

�
O2

K3
½1þ R1 expð�ig1Þ� þ 1� O2 M3

K3

� �
R3 expð�ig3Þ ¼ �

F3 expð�ig3Þ
K3

(28a,b,c)

where the matrix of the coefficients on the left-hand side is the 3� 3 non-viscous dynamical matrix [Z]0.
Indicating with Z

ðcÞ
0;ij the cofactors of Z0,ij and solving for R3 exp(�ig3), one gets

R3 det Z0 þ i
F3

K3
ðZ
ðcÞ
0;13 þ Z

ðcÞ
0;33Þ

� �
expð�ig3Þ ¼ Z

ðcÞ
0;13 (29)

whence observing that detZ0 ¼ Z0,33
(c)
�M3O

2(Z0,13
(c) +Z0,33

(c) )/K3, one derives

R2
3 ¼

Z
ðcÞ2
0;13 � ðF3=K3Þ

2
ðZ
ðcÞ
0;13 þ Z

ðcÞ
0;33Þ

2

Z
ðcÞ
0;33 � ðM3O2ðZ

ðcÞ
0;13 þ Z

ðcÞ
0;33ÞÞ=K3

h i2 ; g3 ¼ arctan
F3ðZ

ðcÞ
0;13 þ Z

ðcÞ
0;33Þ

R3 K3Z
ðcÞ
0;33 �M3O2ðZ

ðcÞ
0;13 þ Z

ðcÞ
0;33Þ

h i
8<:

9=; (30)

For Z
ðcÞ2
0;134ðF3=K3Þ

2
ðZ
ðcÞ
0;13 þ Z

ðcÞ
0;33Þ

2, there is sliding at the support, otherwise there is adhesion with R3 ¼ 0,

g3 ¼7p/2 and |F̂3| ¼ |K3Z0,13
(c) /(Z0,13

(c) +Z0,33
(c) )| by Eq. (29).

After calculating R3 and g3, the unknowns R1 and g1 can be easily obtained by Eq. (28c) and then R2 and g2
by Eq. (28b), though they are not reported here for brevity, as their expressions are somehow long.

Some few other remarks about the diagrams of Figs. 7–9 are to be made. It is interesting that, in the
hypothesis of no dissipation at all (F3 ¼ 0), the solution of the algebraic system (28) furnishes a unitary value
for R1 and a zero value for the rotor slope R2 for O2

¼ K3/M3, as clearly appears in Figs. 7 and 8, where
K3/M3 ¼ 1. On the other hand, the orbital radius R1 vanishes when the product (1�O2M3/K3)[1�3O

2(Jd�Ja)]
is equal to the determinant of the system (28), which condition gives rise to a quadratic equation for O2, with
only one positive root in particular for Ja�Jd40. This root appears in Fig. 7 and may be verified to
correspond to the critical speed of the undamped system when the additional constraint R1 ¼ 0 is also
imposed, which is, as is well known, a general property of the forced oscillations of multi-degree-of-freedom
systems. No zeroes of R1 or R2 can be found on the contrary for F340, whilst a number of common
intersection points of various curves for different F3 values are clearly observable in Figs. 7 and 8. They can be
obtained by cancelling the factors of F3 in the expressions of R1 and R2, which conditions give rise to a quartic
and a cubic algebraic equations, respectively.

In order to recognize the effect of viscous damping, Figs. 10–12 refer to the same data of Figs. 7–9, but add
some viscous dissipation. There are no longer resonance discontinuities in the diagrams and the curves show
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lower amplitudes as a whole, with no common intersection points. The orbital radius R1 does not vanish for
any speed O in the absence of dry friction, while the slope R2 does still vanish as previously for O2

¼ K3/M3, as
easily verifiable by the system equations.

The cases of shafts on two resilient supports are much more varied. Here, only the non-viscous
configuration will be considered, as we are mainly interested in the effects of dry friction.

Figs. 13–16 show the speed response for an example case of a hinged–hinged shaft, for constant sliding
friction resistance on support 4 and several friction levels on support 3. Similar conclusions can be drawn as
for the clamped–free shaft, though the results are a little more complex. The stuck regions of support 3
originate in the low- and high-speed ranges and spread toward the mid-range on increasing the dry friction
level F3, permitting to cut off the critical speeds of the undamped system, while the whirl amplitude remains
quite moderate in the slip range. The two supports may be in the slip or the stick state either separately of
simultaneously depending on the rotating speed and different values of the two friction forces. Remarks
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similar to those for cantilever shaft can be made about the zeroes of the undamped system responses and the
intersection points of various plots for different F3, though such results are obtainable now by solving higher-
degree algebraic equations. The strange changes of the speed response shape for the orbital radius and the
slope of the rotor, on increasing the friction level, are due to the closeness of some critical speeds to each other
and to the complicated alternation of slip and stick states of the one and the other journal box, as shown in
Figs. 15 and 16.

7. Optimization of the dry friction damping system

In the light of the previous results, it may appear desirable to look for an optimized configuration of the
support system and for the best level of friction forces, in order to reduce the overall drawbacks of the whirling
motion. This search requires fixing some specific optimization weights for the amplitudes of various motions
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produced by the rotor unbalance, i.e. for the orbital radii of the rotor and the supports and for the conical
attitude of the rotor axis, with the aim for example of minimizing the maximum value of the weighted average
of their amplitude throughout the speed range.

Of course, one should check that the slip interval does not contain the critical speeds of the rotating machine
on mobile no-friction supports, as the addition of the dry friction resistance could not quench such resonances
unless the adhesion limits are exceeded and the characteristic frequencies of the new constrained system have
become different. Nevertheless, it is to be said that the presence of some extra dissipation forces acting on the
rotor, for example of the viscous kind, might attenuate these resonance peaks.

The dry friction dampers should act in practice as automatic clutches controlled by the angular speed,
blocking the support motion when some critical speed of the undamped system is expected and releasing them
on the contrary when the critical speeds of the fixed-support system are to be feared. This can be obtained, for
given inertia of the rotor and journal boxes, and for given stiffness of the shaft and the suspension spring, by



ARTICLE IN PRESS

0 1 2 3 4

2

3

5

0

1

4

R
4


4 = 0.5

�1 �2 �01 �02


3
3


3

�3 �4

�

Fig. 16. Orbital radius of front journal box, scaled by e, for a hinged-hinged shaft. Viscous damping absent. F3 ¼ 0, 0.2, 0.4, 0.6, 0.8, y

(increasingly in the arrow direction) dt ¼ dr ¼ 0; K3 ¼ K4 ¼ 0.2; M3 ¼M4 ¼ 0.2; Jd�Ja ¼ 0.2; L3 ¼ 0.4; O0j and Oj are the critical speeds

of fixed-support and free-support systems.

0 1 2 3 4

2

3

0

1

R
1

free supports

free supports 

fixed supports 
(
3 → ∞, 
4 → ∞) 

(
3 = 
4 = 0)

(
3 = 
4 = 0)

�1 �2 �01 �02 �3 �4

�

Fig. 17. Optimized orbital radius of rotor (thicker line), scaled by e, for a hinged–hinged shaft. Viscous damping absent. w1 ¼ 0.3;

w2 ¼ 0.3; w3 ¼ 0.2; w4 ¼ 0.2; F3 ¼ 1.3160156; F4 ¼ 0.39335938; R1,max. ¼ 1.4395974; dt ¼ dr ¼ 0; K3 ¼ K4 ¼ 0.2; M3 ¼M4 ¼ 0.2;

Jd�Ja ¼ 0.2; L3 ¼ 0.4; O0j and Oj are the critical speeds of fixed-support and free-support systems.

F. Sorge / Journal of Sound and Vibration 321 (2009) 79–103 99
suitably tuning the values of the closure forces on the one and the other support, in order to produce the most
convenient friction resistance to their motion.

This search can be carried out numerically, for example by some method of the gradient type applied to the
two variables F3 and F4, or else, more simply, by varying one of such variables at a time and spanning the
critical speed range at each step by the techniques described in the previous sections. In this procedure, the step
size has to be reduced, e.g. quartered, in the close neighbourhood of the local minimum of an assumed
criterion function, which can be defined for example by the above weighted average of the whirling
amplitudes.

Figs. 17–20 show the optimized speed response of the rotor (R1, R2) and the supports (R4, R4) for an
example case with hinged–hinged bearings and no viscous damping, assuming the four weight parameters
w1 ¼ 0.3, w2 ¼ 0.3, w3 ¼ 0.2, w4 ¼ 0.2. The rotor amplitude curves for the fixed–fixed-support system
and floating–floating support system in absence of dissipation are also shown, together with their asymptotes.
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The maximum whirl amplitude in the slip range is also indicated, showing the good efficiency of the dry
friction dampers in cutting all critical speeds by their adhesive state and in restraining the whirl amplitude in
the remaining range. Figs. 19 and 20 show also the adhesive force level in the stuck range.

The optimization process can be carried out in a more systematic way, looking for the best combinations of
the couple of numbers F3 and F4 in correspondence of various degrees of asymmetry of the rotating system
(L4aL3) and tracing the diagrams of the optimized parameters in dependence on the rotor distance L3 from
one support. This is shown in Figs. 21 and 22 for the two cases of an elongated and an oblate ellipsoid of
inertia of the rotor, whose diagrams may give a very helpful tool to choose the most suitable axial load and
produce the best friction force. In the second case (oblate ellipsoid), the support 4 turns out to be in an
adhesive state when the rotor dissymmetry is large (i.e. when L3 is small) and the corresponding minimum
adhesive force Fadh., 4 to prevent the support motion, at incipient sliding conditions, is calculated and indicated
in this range. Nevertheless, it is to be said that it is clearly more convenient to block definitively such a support
in that operative field. The non-smoothness of the curves in some points is due to the change of the critical
speed values when varying the system parameters.
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Fig. 23 shows the optimized parameters for the case of a cantilever shaft with a rotor at the free end, in
dependence on the oblate degree Ja�Jd of the inertia ellipsoid and similar considerations can be made.
Moreover, it must be pointed out here that, in the case of an elongated ellipsoid of inertia (Ja�Jdo0), the three
critical speeds to be cancelled are quite separated from each other and the optimization results turn out to be
much poorer than in Fig. 23.

8. Conclusion

The present analysis wants to propose a new technique to quench the unbalance effects and the whirling
motions in rotating machinery, and its particular efficiency in the neighbourhood of the critical flexural speeds
is noteworthy. This practice consists in suspending the shaft journal boxes on suitable elastic supports,
creating front and rear flat rubbing surfaces, orthogonal to the shaft axis, and assigning to these dry friction
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devices the task of restraining all critical whirl motions that arise. The wear compensation of the slip surfaces
does not create any problem, as it can be achieved automatically in the long run by the use of proper spring
loading systems to fasten the sliding contacts.

Adhesion conditions occur between such friction surfaces in some parts of the speed range, where the rotor
behaves thus in the conventional way. Actually, the best use of the dry friction suspensions can be achieved by
confining the multi-degree-of-freedom critical speeds in these stuck ranges and letting the journal boxes slide
in the range that would be critical for the fixed-support system. The dry friction dampers act then like
automatic clutches that block or release the journal boxes depending on the working requirements.

In practice, the most convenient condition of the suspension system for the usual working is the adhesive
state, where is neither relevant energy dissipation nor heat production, while the sliding motion should be
activated only occasionally, to prevent and damp the critical speed of the simple rotor on fixed supports.
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Another significant advantage of the dry friction dampers consists in the possibility of minimizing the
whirling motion also in the slip range by a proper choice of the friction level as a function of suspension-to-
shaft stiffness ratio and on support-to-rotor mass ratio.

Future development of the present analysis will consist in an experimental validation of the theoretical
results on a small scale rotor model with adjustable friction forces on the supports.
References

[1] J. Jiang, H. Ulbrich, Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients, Nonlinear

Dynamics 24-3 (2001) 269–283.

[2] D.W. Childs, Rub-induced parametric excitation in rotors, ASME Journal of Mechanical Design 101 (1979) 640–644.

[3] D.W. Childs, Fractional-frequency rotor motion due to non-symmetric clearance effects, ASME Journal of Engineering for Power 104

(1982) 533–541.

[4] J.Y. Zhao, I.W. Linnett, L.J. McLean, Stability and bifurcation of unbalanced response of a squeeze film damped flexible rotor,

ASME Journal of Tribology 116 (1994) 361–368.

[5] M.D. Rabinowitz, E.J. Hahn, Stability of squeeze-film damper supported flexible rotors, ASME Journal of Engineering Power 99

(1977) 545–551.

[6] M.D. Rabinowitz, E.J. Hahn, Steady-state performance of squeeze-film damper supported flexible rotors, ASME Journal of

Engineering Power 99 (1977) 552–558.

[7] R.G. Kirk, E.J. Gunter, The effect of support flexibility and damping on the synchronous response of a single-mass flexible rotor,

ASME Journal of Engineering for Industry 94 (1972) 221–232.

[8] R.G. Kirk, E.J. Gunter, Effect of support flexibility and damping on the dynamic response of a single-mass flexible rotor in elastic

bearings, NASA CR-2083, July 1972.

[9] Z. Guo, R.G. Kirk, Theoretical study on instability boundary of rotor-hydrodynamic bearing systems: part I—Jeffcott rotor with

external damping, ASME Journal of Vibration and Acoustics 125 (2003) 417–422.

[10] Z. Guo, R.G. Kirk, Theoretical study on instability boundary of rotor-hydrodynamic bearing systems: part II—rotor with external

flexible damped support, ASME Journal of Vibration and Acoustics 125 (2003) 423–426.

[11] O. Montagnier, Ch. Hochard, Dynamic instability of supercritical driveshafts mounted on dissipative supports—effects of viscous

and hysteretic internal damping, Journal of Sound and Vibration 305 (2007) 378–400.

[12] M. Aleyaasin, M. Ebrahimi, R. Whalley, Vibration analysis of distributed-lumped rotor systems, Computer Methods in Applied

Mechanics and Engineering 189-2 (2000) 545–559.

[13] L.X. Liu, C.J. Teo, A.H. Epstein, Z.S. Spakovszky, Hydrostatic gas journal bearings for micro-turbomachinery, Journal of Vibration

and Acoustics 127-2 (2005) 157–164.

[14] J.H. Song, D. Kim, Foil gas bearing with compression springs: analyses and experiments, Journal of Tribology 129-3 (3) (2007)

628–639.

[15] X. Zhu, L. San Andrés, Rotordynamic performance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery, Journal of

Engineering for Gas Turbines and Power 129-4 (2007) 1020–1027.

[16] F. Sorge, Rotor whirl damping by dry friction suspension systems, in: ECOTRIB 2007, European Conference on Tribology,

Ljubljana, Slovenija, 12–15/06/2007, to be printed on MECCANICA, Springer, doi:10.1007/s11012-008-9134-6.

[17] R.G. Kirk, H. Hornschuch, Bearing and housing assembly, US Patent no. 4119375, October 10, 1978.

[18] D.C. Moringiello, S.H. Dallmann, Friction damper, US Patent no. 4337982, July 6, 1982.

[19] S.H. Crandall, Rotating and reciprocating machines, in: W. Flügge (Ed.), Handbook of Engineering Mechanics, McGraw-Hill, New
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